Mice lacking caspase-2 are protected from behavioral changes, but not pathology, in the YAC128 model of Huntington disease
MOLECULAR NEURODEGENERATION
Authors: Carroll, Jeffrey B.; Southwell, Amber L.; Graham, Rona K.; Lerch, Jason P.; Ehrnhoefer, Dagmar E.; Cao, Li-Ping; Zhang, Wei-Ning; Deng, Yu; Bissada, Nagat; Henkelman, R. Mark; Hayden, Michael R.
Abstract
Background: Huntington Disease (HD) is a neurodegenerative disorder in which caspase activation and cleavage of substrates, including the huntingtin protein, has been invoked as a pathological mechanism. Specific changes in caspase-2 (casp2) activity have been suggested to contribute to the pathogenesis of HD, however unique casp2 cleavage substrates have remained elusive. We thus utilized mice completely lacking casp2 (casp2-/-) to examine the role played by casp2 in the progression of HD. This 'substrate agnostic' approach allows us to query the effect of casp2 on HD progression without pre-defining proteolytic substrates of interest. Results: YAC128 HD model mice lacking casp2 show protection from well-validated motor and cognitive features of HD, including performance on rotarod, swimming T-maze, pre-pulse inhibition, spontaneous alternation and locomotor tasks. However, the specific pathological features of the YAC128 mice including striatal volume loss and testicular degeneration are unaltered in mice lacking casp2. The application of high-resolution magnetic resonance imaging (MRI) techniques validates specific neuropathology in the YAC128 mice that is not altered by ablation of casp2. Conclusions: The rescue of behavioral phenotypes in the absence of pathological improvement suggests that different pathways may be operative in the dysfunction of neural circuitry in HD leading to behavioral changes compared to the processes leading to cell death and volume loss. Inhibition of caspase-2 activity may be associated with symptomatic improvement in HD.
Fibroblast growth factor receptor 3 inhibition by short hairpin RNAs leads to apoptosis in multiple myeloma
MOLECULAR CANCER THERAPEUTICS
Authors: Zhu, LJ; Somlo, G; Zhou, BS; Shao, JM; Bedell, V; Slovak, ML; Liu, XY; Luo, JH; Yen, Y
Abstract
The presence of t(4;14)(p16.3;q32.3) in multiple myeloma cells results in dysregulated expression of the fibroblast growth factor receptor 3 (FGFR3). FGFR3 acts as an oncogene to promote multiple myeloma cell proliferation and antiapoptosis. These encourage the clinical development of FGFR3-specific inhibitors. Three short hairpin RNAs (shRNA) targeting different sites of FGFR3 were selected and subsequently transfected into KMS-11, OPM-2, and NCI-H929 human myeloma cell lines, all of which are characterized by t(4;14) and FGFR3 over expression. The combination of these three shRNAs can effectively inhibit FGFR3 expression in all three cell lines. Sequential immunocytochemistry/fluorescence in situ hybridization was employed to validate that the shRNAs specifically inhibited FGFR3 expression in OPM-2 cells. Decreased expression of B-cell chronic lymphocytic leukemia/lymphoma 2 (BCL2) and myeloid cell leukemia sequence 1 (MCL1) proteins and increased staining of Annexin V-positive cells showed that inhibition of FGFR3 induces apoptosis. After confirming down-regulation of FGFR3 by real-time PCR, HU-133 plus 2.0 array was employed to compare the gene expression profile of shRNA-treated sample with that of the control. Besides the down-regulation of FGFR3, expression of the antiapoptotic genes CFLAR, BCL2, MCL1, and some members of NF-kappa B family decreased, whereas expression of the proapoptotic genes CYC, BID, CASP2, and CASP6 increased. Microarray results also revealed changes in genes previously implicated in multiple myeloma pathogenesis (RAS, RAF, IL-6R, and VEGF), as well as others (TLR4, KLF4, and GADD45A) not previously linked to multiple myeloma. Our observations indicate that shRNAs can specifically and effectively inhibit FGFR3 expression. This targeted approach may be worth testing in multiple myeloma patients with t(4;14) and FGFR3 overexpression in the future.