miRNA-1183-targeted regulation of Bcl-2 contributes to the pathogenesis of rheumatic heart disease
BIOSCIENCE REPORTS
Authors: Li, Ni; Zhu, Linwen; Zhou, Hua; Zheng, Dawei; Xu, Guodong; Sun, Lebo; Gao, Jianqing; Shao, Guofeng
Abstract
To determine whether up-regulation of miR-1183 targeting the gene for anti-apoptotic factor, B-cell lymphoma 2 (BCL-2) contributes to apoptosis in patients with rheumatic heart disease (RHD). Peripheral blood samples were isolated for miR-1183 characterization. The function of miRNA-1183 in RHD using miRNA mimic on PBMCs and THP-1 cell models. The binding of miR-1183 and Bcl-2 gene was confirmed by luciferase activity test. We also measured expression levels of BCL-2 in heart valve tissue from patients with RHD using ELISA and immunohistochemistry. In silico analysis and reporter gene assays indicated that miR-1183 directly targets the mRNA encoding BCL-2. It is found that miR-1183 binds directly to the 3'UTR of the BCL-2 mRNA and down-regulates the mRNA and protein levels of BCL-2. Overexpression of miR-1183 in RHD patients and cell lines down-regulated BCL-2 expression and induced apoptosis. With the progression of the disease, the expression of BCL-2 in the heart valve tissue of patients with RHD decreased. MiRNA-1183 is up-regulated in RHD and induces cardiac myocyte apoptosis through direct targeting and suppression of BCL-2, both of whichmight play important roles in RHD pathogenesis. During the compensatory period of RHD, up-regulated miR-1183 destroyed the balance of apoptosis proteins (Bax and BAK) in Bcl-2 family, enhance the apoptosis cascade reaction and reduce the anti apoptosis effect. The significantly higher expression levels of miR-1183 appear to play distinct roles in RHD pathogenesis by regulation BCL-2, possibly affecting myocardial apoptosis and remodeling in the context of RHD.
The Intracellular Number of Magnetic Nanoparticles Modulates the Apoptotic Death Pathway after Magnetic Hyperthermia Treatment
ACS APPLIED MATERIALS & INTERFACES
Authors: Beola, Lilianne; Asin, Laura; Roma-Rodrigues, Catarina; Fernandez-Afonso, Yilian; Fratila, Raluca M.; Serantes, David; Ruta, Sergiu; Chantrell, Roy W.; Fernandes, Alexandra R.; Baptista, Pedro, V; de la Fuente, Jesus M.; Grazu, Valeria; Gutierrez, Lucia
Abstract
Magnetic hyperthermia is a cancer treatment based on the exposure of magnetic nanoparticles to an alternating magnetic field in order to generate local heat. In this work, 3D cell culture models were prepared to observe the effect that a different number of internalized particles had on the mechanisms of cell death triggered upon the magnetic hyperthermia treatment. Macrophages were selected by their high capacity to uptake nanoparticles. Intracellular nanoparticle concentrations up to 7.5 pg Fe/cell were measured both by elemental analysis and magnetic characterization techniques. Cell viability after the magnetic hyperthermia treatment was decreased to <25% for intracellular iron contents above 1 pg per cell. Theoretical calculations of the intracellular thermal effects that occurred during the alternating magnetic field application indicated a very low increase in the global cell temperature. Different apoptotic routes were triggered depending on the number of internalized particles. At low intracellular magnetic nanoparticle amounts (below 1 pg Fe/cell), the intrinsic route was the main mechanism to induce apoptosis, as observed by the high Bax/Bcl-2 mRNA ratio and low caspase-8 activity. In contrast, at higher concentrations of internalized magnetic nanoparticles (1-7.5 pg Fe/cell), the extrinsic route was observed through the increased activity of caspase-8. Nevertheless, both mechanisms may coexist at intermediate iron concentrations. Knowledge on the different mechanisms of cell death triggered after the magnetic hyperthermia treatment is fundamental to understand the biological events activated by this procedure and their role in its effectiveness.