A Novel Mouse Model of Autoimmune Thyroiditis Induced by Immunization with Adenovirus Containing Full-Length Thyroglobulin cDNA: Implications to Genetic Studies of Thyroid Autoimmunity
THYROID
Authors: Faustino, Larissa C.; Li, Cheuk W.; Stefan-Lifshitz, Mihaela; Kim, Kookjoo; Clarke, Oliver B.; Tomer, Yaron
Abstract
Background: Thyroglobulin (TG) is a key autoantigen in autoimmune thyroid diseases (AITD). Several single nucleotide polymorphisms (SNPs) in the TG locus were shown to be strongly associated with disease susceptibility in both humans and mice, and autoimmune response to TG is the earliest event in the development of thyroid autoimmunity in mice. The classical model of experimental autoimmune thyroiditis (EAT) is induced by immunizing mice with TG protein together with an adjuvant to break down immune tolerance. The classical EAT model has limited utility in genetic studies of TG since it does not allow testing the effects of TG sequence variants on the development of autoimmune thyroiditis. In this study, we have immunized CBA-J mice, an EAT-susceptible strain, with an adenovirus vector encoding the full-length human TG (hTG) to generate a model of EAT in which the TG sequence can be manipulated to test AITD-associated TG SNPs. Methods: We immunized CBA-J mice with hTG-expressing adenovirus following the well-recognized experimental autoimmune Graves' disease protocol that also uses an adenovirus vector to deliver the immunogen. Results: After hTG adenovirus immunizations, mice developed higher T cell proliferative and cytokine responses to hTG and TG2098 (a major T cell epitope in AITD) and higher titers of TG and thyroperoxidase autoantibodies compared with mice immunized with control LacZ-expressing adenovirus. The mice, however, did not develop thyroidal lymphocytic infiltration and hypothyroidism. Conclusions: Our data describe a novel murine model of autoimmune thyroiditis that does not require the use of adjuvants to break down tolerance and that will allow investigators to test the effects of hTG variants in the pathoetiology of Hashimoto's thyroiditis.
Hormonal and metabolic gender differences in a cohort of myotonic dystrophy type 1 subjects: a retrospective, case-control study
JOURNAL OF ENDOCRINOLOGICAL INVESTIGATION
Authors: Spaziani, M.; Semeraro, A.; Bucci, E.; Rossi, F.; Garibaldi, M.; Papassifachis, M. A.; Pozza, C.; Anzuini, A.; Lenzi, A.; Antonini, G.; Radicioni, A. F.
Abstract
Purpose Myotonic dystrophy type 1 (DM1) is a genetic disorder caused by CTG expansion in the DMPK gene. The aim was to investigate the endocrine and metabolic aspects of DM1. Patients and methods Retrospective, case-control study. We compared pituitary, thyroid, adrenal, gonadal and liver function and glycolipid metabolism of 63 DM1 patients against 100 control subjects. Given age-related differences, 2 further subgroups were created to investigate the pituitary-gonadal axis: < 41 (1a) and >= 41 (1b) years old for male subjects and < 46 (2a) and >= 46 (2b) years old for female subjects. Testicular and thyroid ultrasounds were also performed in the DM1 group. Results FT3 and FT4 were significantly lower in DM1 men than controls, while for both males and females, thyroglobulin, ACTH and cortisol were significantly higher in the DM1 group. Gonadotropin levels were significantly higher and inhibin B and DHEA-S levels significantly lower in DM1 patients than controls for both male subgroups. Testosterone and SHBG were significantly higher in controls than in patients for subgroup 1a. Prolactin was significantly higher in patients in subgroups 1b, while testosterone was lower in subgroup 2a than in age-matched female controls. A correlation between the number of CTG repeats and the percentage of male hypogonadal subjects was found. Finally, there was a worse glucose and lipid pattern and significantly higher transaminase and gamma-GT levels in both male and female patients. Conclusions The high frequency of endocrine and metabolic abnormalities in DM1 highlights the importance of endocrine monitoring to enable the prompt initiation of a suitable therapy.