In Gram-negative bacteria, the folding and insertion of beta-barrel outer membrane proteins (OMPs) to the outer membrane are mediated by the beta-barrel assembly machinery (BAM) complex. Two leading models of this process have been put forth: the hybrid barrel model, which claims that a lateral gate in BamA's beta-barrel can serve as a template for incoming OMPs, and the passive model, which claims that a thinned membrane near the lateral gate of BamA accelerates spontaneous OMP insertion. To examine the key elements of these two models, we have carried out 45.5 mu s of equilibrium molecular dynamics simulations of BamA with and without POTRA domains from Escherichia coli, Salmonella enterica, Haemophilus ducreyi and Neisseria gonorrhoeae, together with BamA's homolog, TamA from E. coli, in their native, species-specific outer membranes. In these equilibrium simulations, we consistently observe membrane thinning near the lateral gate for all proteins. We also see occasional spontaneous lateral gate opening and sliding of the beta-strands at the gate interface for N. gonorrhoeae, indicating that the gate is dynamic. An additional 14 mu s of free-energy calculations shows that the energy necessary to open the lateral gate in BamA/TamA varies by species, but is always lower than the Omp85 homolog, FhaC. Our combined results suggest OMP insertion utilizes aspects of both the hybrid barrel and passive models. Author summary Gram-negative bacteria such as Escherichia coli have a second, outer membrane surrounding them. This outer membrane provides an additional layer of protection, but also presents an additional challenge in its construction, exacerbated by the lack of chemical energy in this region of the bacterial cell. For example, proteins in the outer membrane are inserted via BamA, itself an integral membrane protein. The precise mechanism by which BamA assists in the insertion process are still unclear. Here, we use extensive simulations in atomistic detail of BamA from multiple species in its native outer membrane environment to shed light on this process. We find that the lateral gate of BamA, a proposed pathway into the membrane, is dynamic, although to a degree varying by species. On the other hand, thinning of the outer membrane near BamA's lateral gate is observed consistently across all simulations. We conclude that multiple features of BamA contribute to protein insertion into the outer membrane.